
Order-disorder phase transition and stress-induced diffusion in Au-Cu

John Hennig,* Daniele Mari, and Robert Schaller
Group of Mechanical Spectroscopy, Institute of Physics of the Condensed Matter, École Polytechnique Fédérale de Lausanne,

Station 3, 1015 Lausanne, Switzerland†

�Received 3 February 2009; published 24 April 2009�

Isothermal mechanical spectroscopy by means of a forced torsion pendulum �measuring internal friction/
mechanical loss� was used to study the interplay of long-range atomic order and stress-induced diffusion
�Zener relaxation� in Au57%Cu43%. Our results show that the relaxation strength of stress-induced diffusion
exhibits the typical Curie-Weiss-type behavior in the disordered solid solution and then gradually goes to zero
below the critical temperature marking the phase transition to the long-range-ordered AuCu II phase. The
breakdown of the relaxation peak reflects the kinetics of the ordering process. The diffusion data were used to
establish the transformation time vs temperature �TTT� diagram of the phase transformation.
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I. INTRODUCTION

The gold-copper system is a classic example for atomic
ordering in alloys and a popular testing ground for theories
predicting alloy phase stability.1 Forming a random solid so-
lution �� phase� at high temperatures �Fig. 1�a��, it undergoes
a solid-solid phase transformation to an ordered phase some-
where below 700 K �depending on composition�.2 In the vi-
cinity of equiatomic AuCu, two ordered structures exist. The
phase AuCu I, with a superstructure of tetragonal L10 sym-
metry �Fig. 1�b��, is stable at low temperatures. Over a tem-
perature range of a few tens of degrees below the transition
from the disordered phase, AuCu II is stable. It differs from
AuCu I in that it has �nearly� periodic antiphase boundaries
along the y axis �about� every five unit cells.3

The kinetics of the ordering processes in Au-Cu have
been studied by several authors, using indicators such as the
elastic modulus4 and the electrical resistivity,5,6 or observing
the evolution of the x-ray diffraction patterns3,7 as a function
of annealing time and annealing temperature. The present
paper deals with the �→AuCu II disorder-order transition
in Au57%Cu43%. This phase transformation is of first order;3

AuCu II grows in the � phase starting from needle-shaped
nuclei.8

The lattice structure of most solid solutions is locally dis-
torted �“bond buckling”�, a phenomenon that arises from the
size mismatch of the alloying elements and which can be
observed by means of x-ray absorption fine-structure
�XAFS� studies9 �as opposed to standard x-ray diffraction,
which only yields average atom positions�. Au-Cu is, again,
a prime example, as the size mismatch of Au and Cu is
particularly large, creating strong static distortions of the lat-
tice in the � phase.10

These lattice distortions in Au-Cu also give rise to a well-
known mechanical relaxation: stress-induced diffusion �or
stress-induced directional ordering�. First described by Clar-
ence Zener in 1947,11 this anelastic phenomenon �reversible,
but not instantaneous� is commonly referred to as the Zener
relaxation. Under an external stress perturbing the equilib-
rium as measured by XAFS, the system will rearrange bonds
along preferential directions dictated by the stress tensor in
order to minimize the total elastic strain energy. The return to

equilibrium is driven by short-range diffusion—much like
the process of atomic ordering.

Several theories exist describing stress-induced diffusion
either as a reorientation of elastic dipoles formed by solute
pairs,12,13 as directional order of �nearest-neighbor� bonds,14

as variations in short-range order beyond nearest
neighbors,15 or by a lattice gas model.16 Experimentally, the
primary interest lies in the fact that the Zener relaxation time
is of the same order of magnitude as the time between atomic
jumps but can be measured at temperatures far below those
accessible to radio-tracer diffusion experiments.17

Long-range-ordered alloys, which, if the order is perfect,
are completely free of static distortions, are not susceptible
to stress-induced diffusion. While intuitively clear, only the
early theory by LeClaire and Lomer14 accounts for this de-
tail. Experimentally, it was verified in a number of alloy
systems, such as Mg-Cd that orders at compositions close to
the intermetallic compound MgCd3.18 However, experimen-
tal methods employed at that time �temperature-dependent
internal friction measurements at a fixed frequency� made it
difficult to study stress-induced diffusion in conjunction with
the order-disorder phase transition and therefore never went
beyond establishing the existence or absence of the Zener
relaxation for a given alloy. The evolution of the relaxation
strength during the transition has never been directly ob-
served. Modern isothermal mechanical spectroscopy, which
probes the anelastic response of a specimen as a function of
frequency of stress excitation at constant temperature, over-
comes this limitation.

(a)
(b)

FIG. 1. �Color online� �a� Cubic unit cell of the disordered solid
solution of gold �large spheres� and copper atoms �small spheres�.
�b� Tetragonal unit cell of the AuCu I ordered phase.
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In the present paper, we will lay out the benefits of iso-
thermal mechanical spectroscopy for the study of order-
disorder transitions in alloys via the phenomenon of stress-
induced diffusion. While mechanical spectroscopy is a global
experimental method and therefore cannot determine alloy
superstructures, it offers a quick and reliable way to obtain
transition temperatures and ordering kinetics. It may also be
seen as a direct observation of the annealing-out of the static
lattice distortions evidenced in XAFS. We have chosen an
alloy of composition Au57%Cu43%, which according to the
phase diagram2 undergoes the �→AuCu II disorder-order
phase transformation at 634 K.

II. THEORY OF THE ZENER RELAXATION

The theory presented in the following paragraphs mostly
follows LeClaire and Lomer.14 However, in an effort to ex-
plain all the qualitative features of our measurements, we
have incorporated the approach by Li and Nowick19 �via Eq.
�8��, so as to yield an explicit Curie-Weiss-type ��1 / �T
−TCW�� temperature dependence of the relaxation strength of
stress-induced diffusion.

Disregarding interactions beyond the nearest-neighbor
shell, the crucial parameter governing ordering phenomena
in a binary A-B alloy is the average bond energy

Vp = VAA
p + VBB

p − 2VAB
p . �1�

The index p accounts for stress-induced variations in energy
among the z

2 crystallographic directions along which the z
nearest neighbors sit. At zero stress, the bond energies will
not depend on p, unless the symmetry of the �disordered
phase’s� lattice is broken by long-range atomic order.

The total internal energy of the crystal can then be ex-
pressed in terms of the number of unlike bonds �NAB� and
like bonds �NAA ,NBB�. For fixed atomic fractions cA and cB,
the bond numbers along p direction �throughout the entire
crystal, not just one row of atoms� are subject to the condi-
tions

NAA
p +

1

2
NAB

p = NcA, �2a�

NBB
p +

1

2
NAB

p = NcB. �2b�

For symmetry reasons, we eliminate NAA
p and NBB

p and choose
the relative numbers of unlike bonds,

yp =

1

2
NAB

p

N
�0 � yp � min�cA,cB�� , �3�

as order parameters.
As the right-hand side of Eq. �2� is constant, one can

analogize the dissociation of unlike bonds to a chemical re-
action:

2A − B � A − A + B − B �for each p� . �4�

The quasichemical approach20 stipulates that the equilibrium
condition be given by the law of mass action applied to this
reaction. In terms of yp, it reads as

�cA − yp��cB − yp�
�yp�2 = exp�−

Vp

kT
� . �5�

Taylor expansion around the zero-stress equilibrium val-
ues, y0

p on the left-hand side and V0
p on the right-hand side,

yields

�yp = g�y0
p�cA

2cB
2 �Vp

kT
, �6�

where �yp and �Vp are the first-order deviations from y0
p and

V0
p, and

g�y0
p� =

�cA − y0
p�y0

p�cB − y0
p�

cA
2cB

2�2cAcB − y0
p�

, �7�

a function depending on the initial state of order y0
p.

A second equilibrium condition is needed in order to fix
either �yp or �Vp. Purely thermodynamics considerations19

yield that for small variations in the order parameters, �Vp

must be of the form

�Vp = v0�p� + �
q

bpq�yq, �8�

where the coupling constants �p= ��� /�yp��,yq�p will be
treated as parameters, v0 designates the volume occupied by
a single atom of the unstrained crystal, and the coefficients
bpq describe the interaction between order parameters. �The
scenario bears resemblance to magnetic materials, where the
alignment of permanent magnetic moments in the �disor-
dered� paramagnetic phase under an external magnetic field
is amplified by the exchange interaction among the magnetic
moments themselves.�

In order to simplify the problem and decouple Eqs. �6�
and �8�, one disregards off-diagonal terms in bpq. Further-
more, since for the cubic lattice all orientations p are crys-
tallographically equivalent at zero stress, bpq is then reduced
to a single parameter, bpq=b	pq.19

Once equilibrium is reached, the strain � has increased
with respect to the initial purely elastic strain. This differ-
ence, the anelastic strain, can be expressed in terms of the
�yp as

�an = �
p

�p�yp. �9�

The same coupling constants �p appear in this expression
due to a reciprocity relation the free-energy differential must
adhere to.19

Finally, using Eq. �6� into Eq. �8�, introducing the Curie-
Weiss temperature of stress-induced diffusion,

kTCW = bg�y0
p�cA

2cB
2 , �10�

and resolving for �Vp, one obtains
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�Vp = v0�p�
T

T − TCW
�11�

for the bond energy variation with stress. The singularity
�Vp presents at TCW should be interpreted in view of the
quasichemical approach �Eq. �5��, which was the starting
point of this derivation. Vp approaching �plus or minus� in-
finity means that yp takes on one of its extreme values, i.e.,
the alloy would spontaneously order even for infinitesimal
stress values. In practice, however, the transition temperature
to long-range atomic order, TA, is higher than TCW. To ac-
count for this difference, interactions beyond the linear term
in Eq. �8� would have to be considered.

The strength of an anelastic relaxation is defined21 as

� =
�an

�el
, �12�

where �el=� /Mu denotes the elastic strain and Mu as the
unrelaxed elastic �Young’s or shear� modulus of the speci-
men. For the Zener relaxation one then finds �using Eq. �9�,
then Eqs. �6� and �11� into Eq. �12��:

� =
cA

2cB
2

k�T − TCW�
v0Mu�

p

g�y0
p��p

2. �13�

The function g �Eq. �7��, which correlates stress-induced
changes to the equilibrium values of yp and Vp, appears in
this expression. In a random solid solution, one has y0

p

=cAcB, and g�y0
p� takes the value of 1. In a perfectly long-

range-ordered structure such as AuCu I �Fig. 1�b��, the zero-
stress order parameter y0

p is either 0 �only like bonds� or 1
2

�only unlike bonds�, depending on p, so that g�y0
p� is zero for

all p. For the more complicated structure of AuCu II, the
result should be virtually the same. While the antiphase
boundaries introduce a certain amount of disorder,8 they are
not expected to contribute measurably to stress-induced re-
laxation since that would involve a collective motion of at-
oms, not just isolated jumps. Thus, when cooling the solid
solution below the temperature of atomic ordering, the Zener
relaxation strength should first show an increase of the
Curie-Weiss type, �� �T−TCW�−1, and then completely dis-
appear.

III. EXPERIMENT

Isothermal mechanical spectroscopy readily yields the Ze-
ner relaxation strength at any given temperature. In a forced
torsion pendulum,22 the harmonic stress applied to the speci-
men produces an harmonic strain that, due to stress-induced
diffusion, lags behind by an angle 
. The tangent of this
phase lag, the mechanical loss tangent, is measured as a
function of driving frequency at constant temperature. If
stress-induced diffusion is governed by a single relaxation
time �, the frequency spectrum of the mechanical loss tan-
gent takes the form of a Debye peak:21

tan 
��� =
�

�1 + �

��

1 + �2�2 . �14�

The peak height, roughly � /2 for �1, yields the relaxation
strength, while the peak’s position, at �=1 /�, reveals the
relaxation time.

As diffusion is a thermally activated process, the relax-
ation time is a function of temperature, following an Arrhen-
ius equation:

� = �0 exp�Hact

kT
� . �15�

Hact designates the activation enthalpy for atom jumps to
neighboring lattice sites that contribute to the relaxation.

Measurements were carried out under a helium atmo-
sphere �7 mbar� on a polycrystalline cylindric specimen �22
mm in length and 2.5 mm in diameter� of Au57%Cu43%, cast
in a graphite crucible after induction melting of 5N-pure gold
and copper under vacuum.

IV. RESULTS AND INTERPRETATION

Figures 2�a� and 2�b� show isothermal frequency spectra
of the mechanical loss tangent at selected temperatures
around the atomic order-disorder transition. From one scan
to the next, the temperature was increased or decreased
�Figs. 2�a� and 2�b�, respectively� in steps of 5 K.

Initially �i.e., at 610 K in Fig. 2�a��, as a result of a pre-
vious thermal treatment, the alloy is ordered. Nevertheless, a
small Zener relaxation peak appears in the spectrum. This
indicates that the state of atomic order is not perfect. Indeed,
due to the nonstoichiometric composition chosen for this ex-
periment, some substitutional disorder must exist: gold at-
oms occupying sites on the copper sublattice. Only in the
perfectly ordered equiatomic AuCu should the peak be ab-
sent.

The advantage of using a nonstoichiometric alloy is that
one also obtains the Zener relaxation time of stress-induced
diffusion in the ordered phase. Results are shown in Fig. 3.
Fitting the relaxation times to the Arrhenius Eq. �15� yields a
limit relaxation time of �0

�o�=3.6�10−9 s and an activation
enthalpy Hact

�o�=1.00 eV.
Due to the variation in the relaxation time, the Zener peak

shifts to the right in Fig. 2�a�. At the same time the peak
height increases. First gradually reflecting the gradual de-
cline of long-range order due to thermal disorder. Then, be-
tween 640 and 650 K, much more rapidly, marking the tran-
sition from the unstable ordered AuCu II phase to the stable
disordered � phase.

The temperature dependence of the Zener relaxation in
the disordered phase is observed in Fig. 2�b�. The relaxation
strength �, readily obtained from the peak height, follows, to
good approximation, a Curie-Weiss-type law �Fig. 4� in
agreement with Eq. �13�. Extrapolation of the fit yields a
Curie-Weiss temperature of stress-induced diffusion of TCW
=596�5 K.

Just like in the ordered phase, the relaxation time obeys
the Arrhenius Eq. �15�, as shown in Fig. 3. However, there is
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a noticeable change in slope at the phase transition. For limit
relaxation time and activation enthalpy in the disordered
phase one finds �0

�d�=1.2�10−20 s and Hact
�d�=2.47 eV, re-

spectively.
Upon cooling below 630 K �again in Fig. 2�b��, the Zener

relaxation peak breaks down. This marks the onset of atomic
ordering which hinders stress-induced diffusion, except for
the contribution due to substitutional disorder in the ordered
phase.

Since the disordered � phase is unstable below 630 K, the
equilibrium critical temperature of atomic ordering, TA, must
be in the vicinity of this value. Section V will explain how to
determine TA with a precision that goes beyond this first
approximation.

The hysteresis between heating and cooling observed in
Fig. 2 clearly indicates that the phase transformation is of
first order: the initial phase first becomes metastable and ad-
ditional overheating or undercooling is required to render it
thermodynamically unstable. After that, the transformation
proceeds more rapidly, only limited by the energy barrier of
atomic diffusion.

V. KINETICS OF ATOMIC ORDERING

The gradual breakdown of the Zener peak below the tran-
sition temperature can be used to study the kinetics of the
ordering process �Fig. 5�. To that end, the specimen was first
annealed in the disordered state at 680 K for one hour, then
quickly cooled below the order-disorder transition tempera-
ture TA. After reaching the target temperature, the mechanical
loss was monitored over time at a fixed frequency. The evo-
lution of the state of long-range order is reflected in the me-
chanical loss dropping from an initial value due to stress-
induced diffusion in the disordered phase down to the
infinite-time value corresponding to maximum order. �For
temperatures where ordering is slow, the final value was ob-
tained after establishing order at a lower temperature and
subsequent reheating.� We will assume that there is a corre-
spondence between this relative relaxation strength and the
volume fraction of the disordered phase. The assumption im-
plies that the ordered phase nucleates and grows within the
disordered phase.

In Fig. 5, the relative relaxation strength is reported as a
function of annealing time. It should be noted that the curves
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FIG. 3. �Color online� Relaxation time of stress-induced diffu-
sion � vs inverse temperature in the disordered and ordered phase
along with separate fits to the Arrhenius Eq. �15�.
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FIG. 2. �Color online� Mechanical loss frequency spectra of Au57%Cu43% in isothermal conditions at selected temperatures �steps of 5 K
between curves� below and above the order-disorder phase transition. �a� Formation of the Zener relaxation peak �due to stress-induced
diffusion� with increasing temperature. �b� Critical evolution of the Zener relaxation peak height with decreasing temperature in the
disordered �-AuCu phase �light shade�, breakdown of the peak during the phase transformation �medium shade� to the ordered AuCu II
phase �dark shade�.
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FIG. 4. �Color online� Curie-Weiss-type behavior of the relax-
ation strength of stress-induced ordering, �−1�T−TCW, as obtained
from the height of the Zener relaxation peaks in the disordered
phase �Fig. 2�b��.
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were smoothed to improve the presentation. The scatter in
the data during the phase transformation, indicated by error
bars in Fig. 5 and also noticeable in the frequency spectra
�Fig. 2�, is caused by a shape memory effect that happens to
occur in this particular alloy,23 hampering precision measure-
ments.

In Fig. 5 one can observe that the stronger the undercool-
ing, the faster the ordering process. At 634 K, on the other
hand, ordering is so slow that one readily estimates an equi-
librium transition temperature of TA=635�1 K.

This result can be corroborated by modeling the kinetics
of the ordering process. For the present alloy, we base our
approach on Šíma’s model for equiatomic AuCu,24 which has
proven to agree very well with other experimental data, such
as differential calorimetry, x-ray, and resistivity measure-
ments.

It was noted by the former author that the ordering in
AuCu does not proceed according to the classical Avrami
equation for nucleation and growth processes. Instead, the
volume fraction of ordered domains f evolves as a simple
exponential: f �1−exp−Kt. Fits to the data in Fig. 5 confirm
this observation for the present Au57%Cu43% alloy. Conse-
quently, f must obey a rate equation:

ḟ = − K�d�f + K�o��1 − f� . �16�

For the rate parameters of ordering and disordering we put

K�o/d� = �0 exp�−
Hact

�d/o�

kT
�exp�−

U�o/d�

kT
� , �17�

which involves the activation enthalpies Hact
�d/o� for diffusion

with the disordered/ordered phase as well as the free-energy
potential barriers U�o� for ordering and U�d� for disordering.
Note that diffusion within the ordered phase enters the rate
parameter of disordering and vice versa.

An advantage of using the Zener relaxation strength as an
indicator for long-range order is that it readily provides dif-
fusion data as well. This was pointed out in Sec. I. We use
the results for ��o� and ��d� extracted from Fig. 3 to estimate
the respective diffusion activation energy Hact

�d/o� in Eq. �17�.

Starting from an expression for the Landau free energy of
AuCu �derived from an alloy Hamiltonian that takes the elec-
tronic properties of Au and Cu into account�,25 Šíma24 pa-
rametrized the potential barriers U�o� and U�d� as a function
of the equilibrium transition temperature TA, the discontinu-
ity of the molar entropy s, the width of the thermal hysteresis
range 	, and some scaling factor n �see the Appendix�. Fits to
the kinetic data displayed in Fig. 5 then yield: n=2470, s
=0.31k, 	=67 K, and, most importantly, a transition tem-
perature TA=635.3 K.

Using the full set of parameters, the TTT diagram, Fig. 6,
was calculated. It shows the fraction of ordered domains as a
function of transformation time and temperature �TTT�. Note
that the breakdown of the Zener relaxation only yielded ki-
netic data for temperatures rather close to TA. The typical
nose of the TTT diagram as well as the low-temperature part
are a result of an extrapolation of the Arrhenius plot of the
Zener relaxation times in Fig. 3 to low temperatures, where
the high driving force of ordering competes with the slow
diffusion.

On a final note, it should be pointed out that the precision
of the measurements presented in this paper is due to the
stability and calibration of the temperature control �about 1
K�. Furthermore, to conduct similar measurements for a
given alloy, the frequency range �of the torsion pendulum to
be used� has to be chosen such that the Zener relaxation peak
appears close to the order-disorder transition temperature.

VI. CONCLUSIONS

Mechanical spectroscopy measurements have evidenced
stress-induced diffusion in the high-temperature disordered
phase of Au57%Cu43%. A Curie-Weiss-type critical behavior
of the Zener relaxation strength was observed while cooling
down to the order-disorder transition temperature. During the
phase transformation the Zener relaxation breaks down, leav-
ing only a residual peak attributed to substitutional disorder
in the ordered AuCu II phase. These observations were used
to determine the transition temperature as well as ordering
kinetics. A TTT diagram for the ordering process was ob-
tained using the activation parameters of the Zener relax-
ation.

APPENDIX

According to Šíma,24 with notation adapted to the present
paper, the potential barriers of ordering and disordering in

1.0

0.5

0.0

(∆
(t

)
-
∆ ∞

)/
∆ 0

120100806040200
time (min)

626 K

624 K

634 K

630 K

628 K

632 K

622 K

FIG. 5. �Color online� Kinetics of the disorder-order transforma-
tion as obtained from �normalized� mechanical loss measurements
over time at 1 Hz after quick cooling of the disordered specimen to
temperatures below the long-range order transition.
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process �→AuCu II, showing the volume fraction of ordered
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the temperature interval from TA− 3
4	 to TA+ 1

4	 read as

U�o� =
1

3
ns	�1 − 3l�T� + 2l�T�3/2�

and

U�d� =
4

3
ns	l�T�3/2,

where

l�T� =
1

4
+

TA − T

	
.
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